SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Green CA, Perrin NA, Hazlehurst B, Janoff SL, DeVeaugh-Geiss A, Carrell DS, Grijalva CG, Liang C, Enger CL, Coplan PM. Pharmacoepidemiol. Drug Saf. 2019; 28(8): 1127-1137.

Affiliation

Adjunct, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.

Copyright

(Copyright © 2019, John Wiley and Sons)

DOI

10.1002/pds.4772

PMID

31020755

Abstract

PURPOSE: The study aims to develop and validate algorithms to identify and classify opioid overdoses using claims and other coded data, and clinical text extracted from electronic health records using natural language processing (NLP).

METHODS: Primary data were derived from Kaiser Permanente Northwest (2008-2014), an integrated health care system (~n > 475 000 unique individuals per year). Data included International Classification of Diseases, Ninth Revision (ICD-9) codes for nonfatal diagnoses, International Classification of Diseases, Tenth Revision (ICD-10) codes for fatal events, clinical notes, and prescription medication records. We assessed sensitivity, specificity, positive predictive value, and negative predictive value for algorithms relative to medical chart review and conducted assessments of algorithm portability in Kaiser Permanente Washington, Tennessee State Medicaid, and Optum.

RESULTS: Code-based algorithm performance was excellent for opioid-related overdoses (sensitivity = 97.2%, specificity = 84.6%) and classification of heroin-involved overdoses (sensitivity = 91.8%, specificity = 99.0%). Performance was acceptable for code-based suicide/suicide attempt classifications (sensitivity = 70.7%, specificity = 90.5%); sensitivity improved with NLP (sensitivity = 78.7%, specificity = 91.0%). Performance was acceptable for the code-based substance abuse-involved classification (sensitivity = 75.3%, specificity = 79.5%); sensitivity improved with the NLP-enhanced algorithm (sensitivity = 80.5%, specificity = 76.3%). The opioid-related overdose algorithm performed well across portability assessment sites, with sensitivity greater than 96% and specificity greater than 84%. Cross-site sensitivity for heroin-involved overdose was greater than 87%, specificity greater than or equal to 99%.

CONCLUSIONS: Code-based algorithms developed to detect opioid-related overdoses and classify them according to heroin involvement perform well. Algorithms for classifying suicides/attempts and abuse-related opioid overdoses perform adequately for use for research, particularly given the complexity of classifying such overdoses. The NLP-enhanced algorithms for suicides/suicide attempts and abuse-related overdoses perform significantly better than code-based algorithms and are appropriate for use in settings that have data and capacity to use NLP.

© 2019 John Wiley & Sons, Ltd.


Language: en

Keywords

abuse; algorithms; heroin; methods; opioid overdose; pharmacoepidemiology; suicide

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print