SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Mirelman A, Bonato P, Camicioli R, Ellis TD, Giladi N, Hamilton JL, Hass CJ, Hausdorff JM, Pelosin E, Almeida QJ. Lancet Neurol. 2019; 18(7): 697-708.

Affiliation

Movement Disorders Research and Rehabilitation Centre, Wilfrid Laurier University, Waterloo, ON, Canada.

Copyright

(Copyright © 2019, Elsevier Publishing)

DOI

10.1016/S1474-4422(19)30044-4

PMID

30975519

Abstract

Gait impairments are among the most common and disabling symptoms of Parkinson's disease. Nonetheless, gait is not routinely assessed quantitatively but is described in general terms that are not sensitive to changes ensuing with disease progression. Quantifying multiple gait features (eg, speed, variability, and asymmetry) under natural and more challenging conditions (eg, dual-tasking, turning, and daily living) enhanced sensitivity of gait quantification. Studies of neural connectivity and structural network topology have provided information on the mechanisms of gait impairment. Advances in the understanding of the multifactorial origins of gait changes in patients with Parkinson's disease promoted the development of new intervention strategies, such as neurostimulation and virtual reality, aimed at alleviating gait impairments and enhancing functional mobility. For clinical applicability, it is important to establish clear links between specific gait impairments, their underlying mechanisms, and disease progression to foster the acceptance and usability of quantitative gait measures as outcomes in future disease-modifying clinical trials.

Copyright © 2019 Elsevier Ltd. All rights reserved.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print