SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Dong C, Xie K, Sun X, Lyu M, YUE H. PLoS One 2019; 14(4): e0214866.

Affiliation

Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Ministry of Transport, Beijing Jiaotong University, Shangyuancun, Haidian District, Beijing, China.

Copyright

(Copyright © 2019, Public Library of Science)

DOI

10.1371/journal.pone.0214866

PMID

30951535

Abstract

Conventional traffic crash analyzing methods focus on identifying the relationship between traffic crash outcomes and impact risk factors and explaining the effects of risk factors, which ignore the changes of roadway systems and can lead to inaccurate results in traffic crash predictions. To address this issue, an innovative two-step method is proposed and a support vector regression (SVR) model is formulated into state-space model (SSM) framework for traffic crash prediction. The SSM was developed in the first step to identify the dynamic evolution process of the roadway systems that are caused by the changes of traffic flow and predict the changes of impact factors in roadway systems. Using the predicted impact factors, the SVR model was incorporated in the second step to perform the traffic crash prediction. A five-year dataset that obtained from 1152 roadway segments in Tennessee was employed to validate the model effectiveness. The proposed models result in an average prediction MAPE of 7.59%, a MAE of 0.11, and a RMSD of 0.32. For the performance comparison, a SVR model and a multivariate negative binomial (MVNB) model were developed to do the same task. The results show that the proposed model has superior performances in terms of prediction accuracy compared to the SVR and MVNB models. Compared to the SVR and MVNB models, the benefit of incorporating a state-space model to identify the changes of roadway systems is significant evident in the proposed models for all crash types, and the prediction accuracy that measured by MAPE can be improved by 4.360% and 6.445% on average, respectively. Apart from accuracy improvement, the proposed models are more robust and the predictions can retain a smoother pattern. Furthermore, the results show that the proposed model has a more precise and synchronized response behavior to the high variations of the observed data, especially for the phenomenon of extra zeros.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print