SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

De Pauw K, Cherelle P, Tassignon B, Van Cutsem J, Roelands B, Marulanda FG, Lefeber D, Vanderborght B, Meeusen R. PLoS One 2019; 14(4): e0214711.

Affiliation

Strategic Research Program 'Exercise and the Brain in Health & Disease: the added value of Human-Centered Robotics', Vrije Universiteit Brussel, Brussels, Belgium.

Copyright

(Copyright © 2019, Public Library of Science)

DOI

10.1371/journal.pone.0214711

PMID

30943265

Abstract

OBJECTIVES: The objectives are to determine neural dynamics during gait using electro-encephalography and source localization, and to investigate the attentional demand during walking in able-bodied individuals, and individuals with an amputation. MATERIALS & METHODS: Six able-bodied individuals conducted one experimental trial, and 6 unilateral transtibial and 6 unilateral transfemoral amputees performed 2 experimental trials; the first with the prosthesis currently used by the subjects and the second with a novel powered transtibial prosthesis, i.e. the Ankle Mimicking Prosthetic foot 4.0. Each experimental trial comprised 2 walking tasks; 6 and 2 minutes treadmill walking at normal speed interspersed by 5 minutes of rest. During 6 minutes walking the Sustained Attention to Response (go-no go) Task, which measures reaction time and accuracy, was performed. Electro-encephalographic data were gathered when subjects walked 2 minutes. Motor-related cortical potentials and brain source activity during gait were examined. Normality and (non-) parametric tests were conducted (p<0.05).

RESULTS AND DISCUSSION: In contrast to transtibial amputees, transfemoral amputees required more attentional demands during walking with Ankle Mimicking Prosthetic foot 4.0 compared to the current passive prosthetic device and able-bodied individuals (reaction time and accuracy: p≤0.028). Since risk of falling is associated with altered attentional demands, propulsive forces of the novel device need to be better controlled for transfemoral amputees. No motor-related cortical potentials at Cz were observed in transfemoral amputees walking with the novel prosthesis, whereas motor-related cortical potentials between transtibial amputees and able-bodied individuals during walking at normal speed did not differ. The first positive electro-physiological peak deflection appeared during toe-off phase and showed higher activity within the underlying brain sources in transtibial amputees walking with Ankle Mimicking Prosthetic foot 4.0 compared to able-bodied individuals. The required higher neural input to accomplish the same physical activity compared to able-bodied individuals is possibly due to the limited acclimation period to the novel device and consequently increased afferent sensory feedback for postural control.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print