SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Węgrzyński W, Lipecki T, Krajewski G. Fire Technol. 2018; 54(5): 1443-1485.

Copyright

(Copyright © 2018, Holtzbrinck Springer Nature Publishing Group)

DOI

10.1007/s10694-018-0749-4

PMID

unavailable

Abstract

The requirement to model wind is inherently connected with the modelling of many fire-related phenomena. With its defining influence on fire behaviour, spread and smoke transport, the solution of a problem with and without wind exposure will lead to substantially different results. As wind and fire are phenomena that often require different scales of analysis and approaches to modelling, their coupling is not a trivial task. This paper is the second part of a two-paper review of the coupling between fire safety engineering and computational wind engineering (CWE). Part I contained a review of historical interactions between these disciplines, sorted into six distinct areas: flames, indoor flows, natural ventilators, tunnels, wildfires and urban smoke dispersion. This part of the review contains practical information related to wind modelling in fire analysis, based on various available CWE best practice guidelines. As the authors conclude, the most relevant of these are guidelines related to urban physics and natural ventilation; however, many more are discussed and presented, together with the results of other essential wind engineering experiments and computations. Introduction of wind as a boundary condition is explained in details, both based on wind statistics, or meso/micro scale coupled modelling. The guidelines for wind/fire coupled analyses are subdivided into recommendations for: building the digital domain, spatial and temporal discretisation, the consequences of the choice of a turbulent flow model, and the procedure for optimising CFD analysis of both wind and fire phenomena.


Language: en

Keywords

Computational fluid dynamics; Computational wind engineering; Fire; Fire safety engineering; Wind

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print