SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Muijzer-Witteveen H, Sibum N, van Dijsseldonk R, Keijsers N, van Asseldonk E. J. Neuroengineering Rehabil. 2018; 15(1): e112.

Affiliation

Biomechanical Engineering, University of Twente, Drienerlolaan 5, Enschede, 7522 NB, the Netherlands.

Copyright

(Copyright © 2018, Holtzbrinck Springer Nature Publishing Group - BMC)

DOI

10.1186/s12984-018-0445-0

PMID

30470238

Abstract

BACKGROUND: Wearable exoskeletons can be a powerful tool for the facilitation of ambulation of complete Spinal Cord Injury (SCI) subjects, which has several psychological and physical advantages. However, exoskeleton control is difficult for this group of users and requires a long period of training. People with SCI not only lack the motor control, but also miss the sensory information from below the level of the lesion, which is for example very important in their perception of body posture and makes balancing with an exoskeleton difficult. It is hypothesized that through sensory substitution part of the missing sensory information can be provided and might thereby improve the control of an exoskeleton. However, it is not known which information would be most important to receive while using an exoskeleton and how this feedback should be provided.

METHODS: To investigate the preferences of users of an exoskeleton, a questionnaire was filled out by 10 SCI subjects who underwent a training program with a commercial exoskeleton (ReWalk). The questionnaire consisted of questions about the use of the exoskeleton to identify which information is missing and which instructions from the therapists were needed to be able to control the exoskeleton. The second part of the questionnaire focused on the possibilities of sensory feedback and preferences for stimulation methods (auditory, vibrotactile or visual) and feedback timing (discrete or continuous) were investigated. Furthermore, six options for feedback parameters (step initiation, continuous and discrete gait phases, foot position and mediolateral and anteroposterior weight shift) were proposed and the respondents were asked to indicate their preferences.

RESULTS: Three feedback parameters (feedback about mediolateral and anteroposterior weight shift and feedback about step initiation) were considered as possibly helpful by the respondents. Furthermore, there were slight preferences for the use of vibrotactile (over auditory and visual) and discrete (over continuous) feedback.

CONCLUSIONS: The answers of the respondents on the optimal feedback parameters were rather variable and therefore it is recommended to let the users choose their preferred feedback system during a training session with several feedback options. However, there are slight preferences for the use of vibrotactile stimulation provided in a discrete way.


Language: en

Keywords

Online questionnaire; Sensory feedback; Spinal cord injury; User preferences; Wearable exoskeleton

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print