SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Cong H, Chen C, Lin PS, Zhang G, Milton J, Zhi Y. Transp. Res. Rec. 2018; 2672(45): 196-209.

Copyright

(Copyright © 2018, Transportation Research Board, National Research Council, National Academy of Sciences USA, Publisher SAGE Publishing)

DOI

10.1177/0361198118796938

PMID

unavailable

Abstract

Highway traffic incidents induce a significant loss of life, economy, and productivity through injuries and fatalities, extended travel time and delay, and excessive energy consumption and air pollution. Traffic emergency management during incident conditions is the core element of active traffic management, and it is of practical significance to accurately understand the duration time distribution for typical traffic incident types and the factors that influence incident duration. This study proposes a dual-learning Bayesian network (BN) model to estimate traffic incident duration and to examine the influence of heterogeneous factors on the length of duration based on expert knowledge of traffic incident management and highway incident data collected in Zhejiang Province, China. Fifteen variables related to three aspects of traffic incidents, including incident information, incident consequences, and rescue resources, were included in the analysis. The trained BN model achieves favorable performance in several areas, including classification accuracy, the receiver operating characteristic (ROC) curve, and the area under curve (AUC) value. A classification matrix, and significant variables and their heterogeneous influences are identified accordingly. The research findings from this study provide beneficial reference to the understanding of decision-making in traffic incident response and process, active traffic incident management, and intelligent transportation systems.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print