SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Li Z, Kluger R, Hu X, Wu YJ, Zhu X. Transp. Res. Rec. 2018; 2672(42): 148-158.

Copyright

(Copyright © 2018, Transportation Research Board, National Research Council, National Academy of Sciences USA, Publisher SAGE Publishing)

DOI

10.1177/0361198118772956

PMID

unavailable

Abstract

The primary objective of this study was to increase the sample size of public probe vehicle-based arterial travel time estimation. The complete methodology of increasing sample size using incomplete trajectory was built based on a k-Nearest Neighbors (k-NN) regression algorithm. The virtual travel time of an incomplete trajectory was represented by similar complete trajectories. As incomplete trajectories were not used to calculate travel time in previous studies, the sample size of travel time estimation can be increased without collecting extra data. A case study was conducted on a major arterial in the city of Tucson, Arizona, including 13 links. In the case study, probe vehicle data were collected from a smartphone application used for navigation and guidance. The case study showed that the method could significantly increase link travel time samples, but there were still limitations. In addition, sensitivity analysis was conducted using leave-one-out cross-validation to verify the performance of the k-NN model under different parameters and input data. The data analysis showed that the algorithm performed differently under different parameters and input data. Our study suggested optimal parameters should be selected using a historical dataset before real-world application.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print