SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Cui H, Hu Q, Mao Q. Sensors (Basel) 2018; 18(11): s18113675.

Affiliation

Beijing Advanced Innovation Center for Imaging Technology, Key Laboratory of 3-Dimensional Information Acquisition and Application, Ministry of Education Capital Normal University, Beijing 100048, China. qzhmao@whu.edu.cn.

Copyright

(Copyright © 2018, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s18113675

PMID

30380649

Abstract

With the increase in the number of service years for high-speed railways, the foundation of the rail track suffers from settlement, which causes rail track irregularity. To adjust the position of the track and meet track regularity demands, several components of the fastening system will be replaced by different sized components. It is important to measure the exact geometric parameters for the components of a fastening system before adjusting the track. Currently, the measurement process is conducted manually, which is laborious and error-prone. In this paper, a real-time geometric parameter measurement system for high-speed railway fastener based on 2-D laser profilers is presented. Dense and precise 3-D point clouds of high-speed railway fasteners are obtained from the system. A fastener extraction method is presented to extract fastener point cloud and a region-growing algorithm is used to locate key components of the fastener. Then, the geometric parameter of the fastener is worked out. An experiment was conducted on a high-speed railway near Wuhan, China to verify the accuracy and repeatability of the system. The maximum root-mean-square-error between the manual measurement and the system measurement is 0.3 mm, which demonstrates adequate accuracy. This system can replace manual measurements and greatly improve the efficiency of geometric parameter measurements for fasteners.


Language: en

Keywords

dense point cloud; fastener geometric parameter measurement; high-speed railway; region grow; structured light sensor

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print