SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Wu N, Fu G, Yang Y, Xia M, Yun H, Wang Q. J. Hazard. Mater. 2018; 363: 1-9.

Affiliation

Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao City, 266042, Shandong, People's Republic of China.

Copyright

(Copyright © 2018, Elsevier Publishing)

DOI

10.1016/j.jhazmat.2018.08.090

PMID

30300772

Abstract

Flame-retarded poly(lactic acid) (PLA) biodegradable materials are viewed as promising as sustainable alternatives to petroleum-based commodity polymers. A new highly efficient flame retardant, poly(phenylphosphoryl phenylenediamine) (PPDA), was synthesized by the condensation of phenylphosphoryl dichloride with p-phenylenediamine and its structure was confirmed by 1H nulear magnetic resonance and Fourier-transform infrared spectroscopy. When 3 wt% PPDA was incorporated into PLA, the limited oxygen index increased from 20.0% of neat PLA to 25.5% and its UL-94 vertical burning testing achieved V-0 rating. Moreover, the total heat release and peak heat release rate values of PLA/3 wt% PPDA material were decreased from 109.1 MJ/m2 and 643.7 kW/m2 of PLA to 98.3 MJ/m2 and 570.0 kW/m2, respectively, and the fire performance index increased from 0.081 of PLA to 0.132 m2 s/kW. The high fire safety of PPDA in PLA is mainly attributed to the combined effects of the phosphorous-containing radical inhibition and inert gases and the barrier action of the formed char layer. The addition of less than 3 wt% PPDA has little influence on the tensile and impact properties of PLA. The flame retardant PLA blends have great application potential in electrical casing, automobile interiors and three-dimensional printing materials.

Copyright © 2018 Elsevier B.V. All rights reserved.


Language: en

Keywords

Biodegradable material; Fire safety; Flame retardant mechanism; Phosphorous-nitrogen containing flame retardant; Poly(lactic acid)

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print