SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Faria M, Rolim CC, Duarte G, Farias T, Baptista P. Transp. Res. D Trans. Environ. 2018; 62: 489-507.

Copyright

(Copyright © 2018, Elsevier Publishing)

DOI

10.1016/j.trd.2018.03.008

PMID

unavailable

Abstract

Information and communication technologies used for on-board vehicle monitoring have been adopted as an additional tool to characterize mobility flows. Furthermore, traffic volumes are traditionally measured to understand cities traffic dynamics. This paper presents an innovative methodology that uses an extensive and complementary real-world dataset to make a scenario-based analysis allowing assessing energy consumption impacts of shifting traffic from peak to off-peak hours. In the specific case of the city of Lisbon, a sample of 40 drivers was monitored for a period of six months. The obtained data allowed testing the impacts of increasing the percentage of traffic shifting from peak to off-peak hours in energy consumption. Both average speed and energy consumption variations were quantified for each of the tested percentages, allowing concluding that for traffic shifts of up to 30% a positive impact in consumption can be observed. In terms of potential gains associated to shifting traffic from peak hours, reductions in energy consumption from 0.1% to 0.4% can be obtained for traffic volumes shifts from 5 to 30%. Overall, the maximum reduction in energy consumption is achieved for a 20% traffic shift. Average speed variation follows the same trend as energy consumption, but in the opposite direction, i.e. instead of decreasing, average speed increases. For the best case scenario, considering only the sections of roads with traffic sensors, a 1.4% reduction in trip time may be achieved, as well as savings of up to 6 l of fuel and 14.5 kg of avoided CO2 emissions per day.

Keywords

Energy consumption; On-board vehicle monitoring; Scenarios; Traffic shifts; Traffic volumes; Vehicle dynamics

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print