SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

McLaurin EJ, Lee JD, McDonald AD, Aksan N, Dawson J, Tippin J, Rizzo M. Transp. Res. F Traffic Psychol. Behav. 2018; 58: 25-38.

Copyright

(Copyright © 2018, Elsevier Publishing)

DOI

10.1016/j.trf.2018.05.019

PMID

unavailable

Abstract

One challenge in using naturalistic driving data is producing a holistic analysis of these highly variable datasets. Typical analyses focus on isolated events, such as large g-force accelerations indicating a possible near-crash. Examining isolated events is ill-suited for identifying patterns in continuous activities such as maintaining vehicle control. We present an alternative approach that converts driving data into a text representation and uses topic modeling to identify patterns across the dataset. This approach enables the discovery of non-linear patterns, reduces the dimensionality of the data, and captures subtle variations in driver behavior. In this study topic models were used to concisely described patterns in trips from drivers with and without untreated obstructive sleep apnea (OSA). The analysis included 5000 trips (50 trips from 100 drivers; 66 drivers with OSA; 34 comparison drivers). Trips were treated as documents, and speed and acceleration data from the trips were converted to "driving words." The identified patterns, called topics, were determined based on regularities in the co-occurrence of the driving words within the trips. This representation was used in random forest models to predict the driver condition (i.e., OSA or comparison) for each trip. Models with 10, 15 and 20 topics had better accuracy in predicting the driver condition, with a maximum AUC of 0.73 for a model with 20 topics. Trips from drivers with OSA were more likely to be defined by topics for smaller lateral accelerations at low speeds. The results demonstrate topic modeling as a useful tool for extracting meaningful information from naturalistic driving datasets.


Language: en

Keywords

Driver behavior; Drowsiness; Machine learning; Naturalistic driving data; Sleep apnea; Topic modeling

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print