SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Guan D, Cao Y, Yang J, Cao Y, Tisse CL. Appl. Opt. (2004) 2018; 57(18): D108-D116.

Copyright

(Copyright © 2018, Optical Society of America)

DOI

unavailable

PMID

30117929

Abstract

Recent research has demonstrated that the fusion of complementary information captured by multi-modal sensors (visible and infrared cameras) enables robust pedestrian detection under various surveillance situations (e.g., daytime and nighttime). In this paper, we investigate a number of fusion architectures in an attempt to identify the optimal way of incorporating multispectral information for joint semantic segmentation and pedestrian detection. We made two important findings: (1) the sum fusion strategy, which computes the sum of two feature maps at the same spatial locations, delivers the best performance of multispectral detection, while the most commonly used concatenation fusion surprisingly performs the worst; and (2) two-stream semantic segmentation without multispectral fusion is the most effective scheme to infuse semantic information as supervision for learning human-related features. Based on these studies, we present a unified multispectral fusion framework for joint training of semantic segmentation and target detection that outperforms state-of-the-art multispectral pedestrian detectors by a large margin on the KAIST benchmark dataset.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print