SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Canli E, Loigge B, Glade T. Nat. Hazards 2018; 91(Suppl): 103-127.

Copyright

(Copyright © 2018, Holtzbrinck Springer Nature Publishing Group)

DOI

10.1007/s11069-017-2953-9

PMID

unavailable

Abstract

Crucial to most landslide early warning system (EWS) is the precise prediction of rainfall in space and time. Researchers are aware of the importance of the spatial variability of rainfall in landslide studies. Commonly, however, it is neglected by implementing simplified approaches (e.g. representative rain gauges for an entire area). With spatially differentiated rainfall information, real-time comparison with rainfall thresholds or the implementation in process-based approaches might form the basis for improved landslide warnings. This study suggests an automated workflow from the hourly, web-based collection of rain gauge data to the generation of spatially differentiated rainfall predictions based on deterministic and geostatistical methods. With kriging usually being a labour-intensive, manual task, a simplified variogram modelling routine was applied for the automated processing of up-to-date point information data. Validation showed quite satisfactory results, yet it also revealed the drawbacks that are associated with univariate geostatistical interpolation techniques which solely rely on rain gauges (e.g. smoothing of data, difficulties in resolving small-scale, highly intermittent rainfall). In the perspective, the potential use of citizen scientific data is highlighted for the improvement of studies on landslide EWS.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print