SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Du J, Zhang Y, Luo J, Jia Y, Wei Q, Tao C, Xu H. BMC Med. Inform. Decis. Mak. 2018; 18(Suppl 2): e43.

Affiliation

The University of Texas School of Biomedical Informatics, 7000 Fannin St Suite 600, Houston, TX, 77030, USA. hua.xu@uth.tmc.edu.

Copyright

(Copyright © 2018, Holtzbrinck Springer Nature Publishing Group - BMC)

DOI

10.1186/s12911-018-0632-8

PMID

30066665

Abstract

BACKGROUND: Suicide has been one of the leading causes of deaths in the United States. One major cause of suicide is psychiatric stressors. The detection of psychiatric stressors in an at risk population will facilitate the early prevention of suicidal behaviors and suicide. In recent years, the widespread popularity and real-time information sharing flow of social media allow potential early intervention in a large-scale population. However, few automated approaches have been proposed to extract psychiatric stressors from Twitter. The goal of this study was to investigate techniques for recognizing suicide related psychiatric stressors from Twitter using deep learning based methods and transfer learning strategy which leverages an existing annotation dataset from clinical text.

METHODS: First, a dataset of suicide-related tweets was collected from Twitter streaming data with a multiple-step pipeline including keyword-based retrieving, filtering and further refining using an automated binary classifier. Specifically, a convolutional neural networks (CNN) based algorithm was used to build the binary classifier. Next, psychiatric stressors were annotated in the suicide-related tweets. The stressor recognition problem is conceptualized as a typical named entity recognition (NER) task and tackled using recurrent neural networks (RNN) based methods. Moreover, to reduce the annotation cost and improve the performance, transfer learning strategy was adopted by leveraging existing annotation from clinical text.

RESULTS & CONCLUSIONS: To our best knowledge, this is the first effort to extract psychiatric stressors from Twitter data using deep learning based approaches. Comparison to traditional machine learning algorithms shows the superiority of deep learning based approaches. CNN is leading the performance at identifying suicide-related tweets with a precision of 78% and an F-1 measure of 83%, outperforming Support Vector Machine (SVM), Extra Trees (ET), etc. RNN based psychiatric stressors recognition obtains the best F-1 measure of 53.25% by exact match and 67.94% by inexact match, outperforming Conditional Random Fields (CRF). Moreover, transfer learning from clinical notes for the Twitter corpus outperforms the training with Twitter corpus only with an F-1 measure of 54.9% by exact match. The results indicate the advantages of deep learning based methods for the automated stressors recognition from social media.


Language: en

Keywords

Deep learning; Mental health; Named entity recognition; Psychiatric stressors; Social media; Suicide

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print