SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Angelini MJ, Kesler RM, Petrucci MN, Rosengren KS, Horn GP, Hsiao-Wecksler ET. Appl. Ergon. 2018; 70: 59-67.

Affiliation

University of Illinois, Dept. of Mechanical Science and Engineering, Urbana-Champaign, IL, USA. Electronic address: ethw@illinois.edu.

Copyright

(Copyright © 2018, Elsevier Publishing)

DOI

10.1016/j.apergo.2018.02.006

PMID

29866326

Abstract

Slips, trips, and falls (STF) of firefighters may occur while traversing stationary obstacles. STF risk may be amplified by fatigue from firefighting and carrying an asymmetric load. Vertical and horizontal clearances of the lead (VCL, HCL) and trailing (VCT, HCT) foot and contact with a 30 cm obstacle were examined in 24 firefighters. We examined the impact on obstacle crossing performance due to three exercise protocols (treadmill walking or simulated firefighting in an environmental chamber, and simulated firefighting in a live-fire burn building) and carrying a hose load on the right shoulder. Post-activity fatigue resulted in significant decreases in HCL and VCT. Adding a hose load did not affect choice of lead/trailing foot, but did significantly decreased HCL and increased VCL. The hose load amplified acute fatigue effects by causing a sharper decrease in both VCL and VCT. Clearances were significantly impacted by interaction effects of exercise protocol type and acute fatigue. HCL decreased and VCL remained consistent following both simulated firefighting tasks, but HCL remained unchanged and VCL increased following the treadmill protocol. Contact errors increased with fatigue and load, and more errors occurred following simulated firefighting task protocols compared to treadmill walking. Our findings suggest that both acute fatigue and carrying an additional load can cause decrements in firefighter movement, which may place a firefighter at greater STF risk. Simulated firefighting testing protocols may have greater impact on movement performance than treadmill walking. Knowledge of these results may assist in the development of a reliable, laboratory based, and standardizable simulated firefighting exercise protocol.

Copyright © 2018 Elsevier Ltd. All rights reserved.


Language: en

Keywords

Firefighters; Foot clearance; Obstacle crossing

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print