SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Zhou J, Reniers G. Safety Sci. 2018; 108: 188-195.

Copyright

(Copyright © 2018, Elsevier Publishing)

DOI

10.1016/j.ssci.2018.04.019

PMID

unavailable

Abstract

If flammable gas is mixed with air, and the mixture is ignited, it is possible to form a vapor cloud explosion (VCE) which may be very destructive, and easy to trigger a domino effect of accidents because of its large extent of impact. A VCE accident may induce secondary VCE accidents, then tertiary VCE accidents, and so on. This is called the cascading effect of VCE accidents, which requires an understanding of probabilities and propagation patterns to prevent and mitigate the potential damages. In this work, a methodology based on Petri-net is proposed to model the cascading effect of VCE accidents and perform probability analysis, taking the mutual influence between the accidents into account. The deficiency in probability analysis of VCE accidents is discussed. According to the limits of states and their changes which reflect characteristics of VCE propagation, a Petri-net approach is provided for modeling and analysis of VCE cascading effect, and the modeling approach and analysis process of VCE cascading effect are presented. The application and efficacy of the methodology are demonstrated via an example of VCE accidents occurring in a gasoline tank storage area. The results show that the developed methodology can effectively reveal the propagation patterns of VCEs cascading and calculate the respective probabilities of VCE accidents.


Language: en

Keywords

Cascading effect; Petri-net; Probability analysis; Propagation patterns; Vapor cloud explosion

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print