SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Dennis EL, Babikian T, Alger J, Rashid F, Villalon-Reina JE, Jin Y, Olsen A, Mink R, Babbitt CJ, Johnson J, Giza CC, Thompson PM, Asarnow RF. Hum. Brain Mapp. 2018; ePub(ePub): ePub.

Affiliation

Brain Research Institute, UCLA, Los Angeles, California.

Copyright

(Copyright © 2018, John Wiley and Sons)

DOI

10.1002/hbm.24209

PMID

29749094

Abstract

Traumatic brain injury can cause extensive damage to the white matter (WM) of the brain. These disruptions can be especially damaging in children, whose brains are still maturing. Diffusion magnetic resonance imaging (dMRI) is the most commonly used method to assess WM organization, but it has limited resolution to differentiate causes of WM disruption. Magnetic resonance spectroscopy (MRS) yields spectra showing the levels of neurometabolites that can indicate neuronal/axonal health, inflammation, membrane proliferation/turnover, and other cellular processes that are on-going post-injury. Previous analyses on this dataset revealed a significant division within the msTBI patient group, based on interhemispheric transfer time (IHTT); one subgroup of patients (TBI-normal) showed evidence of recovery over time, while the other showed continuing degeneration (TBI-slow). We combined dMRI with MRS to better understand WM disruptions in children with moderate-severe traumatic brain injury (msTBI). Tracts with poorer WM organization, as shown by lower FA and higher MD and RD, also showed lower N-acetylaspartate (NAA), a marker of neuronal and axonal health and myelination. We did not find lower NAA in tracts with normal WM organization. Choline, a marker of inflammation, membrane turnover, or gliosis, did not show such associations. We further show that multi-modal imaging can improve outcome prediction over a single modality, as well as over earlier cognitive function measures. Our results suggest that demyelination plays an important role in WM disruption post-injury in a subgroup of msTBI children and indicate the utility of multi-modal imaging.

© 2018 Wiley Periodicals, Inc.


Language: en

Keywords

MRS; diffusion MRI; longitudinal; pediatric; traumatic brain injury

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print