SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Laña I, Olabarrieta II, Vélez M, Del Ser J. Transp. Res. C Emerg. Technol. 2018; 90: 18-33.

Copyright

(Copyright © 2018, Elsevier Publishing)

DOI

10.1016/j.trc.2018.02.021

PMID

unavailable

Abstract

Vehicle flow forecasting is of crucial importance for the management of road traffic in complex urban networks, as well as a useful input for route planning algorithms. In general traffic predictive models rely on data gathered by different types of sensors placed on roads, which occasionally produce faulty readings due to several causes, such as malfunctioning hardware or transmission errors. Filling in those gaps is relevant for constructing accurate forecasting models, a task which is engaged by diverse strategies, from a simple null value imputation to complex spatio-temporal context imputation models. This work elaborates on two machine learning approaches to update missing data with no gap length restrictions: a spatial context sensing model based on the information provided by surrounding sensors, and an automated clustering analysis tool that seeks optimal pattern clusters in order to impute values. Their performance is assessed and compared to other common techniques and different missing data generation models over real data captured from the city of Madrid (Spain). The newly presented methods are found to be fairly superior when portions of missing data are large or very abundant, as occurs in most practical cases.


Language: en

Keywords

Cluster analysis; Data imputation; Missing data; Traffic forecasting

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print