SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Li H, Cebe J, Khoeini S, Xu YA, Dyess C, Guensler R. Transp. Res. Rec. 2018; 2672(44): 1-9.

Copyright

(Copyright © 2018, Transportation Research Board, National Research Council, National Academy of Sciences USA, Publisher SAGE Publishing)

DOI

10.1177/0361198118757981

PMID

unavailable

Abstract

Pedestrian infrastructure that is comfortable, connected to destinations of interest, and accessible to those with disabilities is vital to a safe, accessible, equitable, and sustainable transportation system. Planners recognize the benefits of providing well-maintained sidewalks and curb ramps, but often lack the asset management systems necessary to inventory sidewalk maintenance problems, prioritize sidewalk maintenance needs, and track the implementation of sidewalk improvement projects. Communities that are managing sidewalk presence and condition data typically link the data to their roadway network, which makes tracking specific sidewalk assets difficult. This paper introduces an affordable, semi-automated, and easy-to-implement process to generate a GIS-based sidewalk network with associated links and nodes representing crosswalks and intersections. Quantitative sidewalk condition data can be loaded onto the network, which allows it to be used to manage sidewalks as transportation assets, assessing pedestrian accessibility, prioritizing repairs or improvements, and to automatically identify accessible routes between origins and destinations. System inputs include parcel-level land-use and roadway centerline data, both of which are publicly available and free in most cases. The network is generated within the ArcGIS environment, using Python scripts to implement embedded ArcGIS functions. The method requires few computational resources, and tremendously reduces the manual labor required to develop a fully interconnected sidewalk network. Examples from multiple communities are presented to show how quantitative sidewalk condition data are loaded onto the network, and illustrate the network's potential for pedestrian navigation and routing applications.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print