SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Vejmelka M, Kochanski AK, Mandel J. Int. J. Wildland Fire 2016; 25(5): 558-568.

Copyright

(Copyright © 2016, International Association of Wildland Fire, Fire Research Institute, Publisher CSIRO Publishing)

DOI

10.1071/WF14085

PMID

unavailable

Abstract

Fuel moisture has a major influence on the behaviour of wildland fires and is an important underlying factor in fire risk assessment. We propose a method to assimilate dead fuel moisture content (FMC) observations from remote automated weather stations (RAWS) into a time lag fuel moisture model. RAWS are spatially sparse and a mechanism is needed to estimate fuel moisture content at locations potentially distant from observational stations. This is arranged using a trend surface model (TSM), which allows us to account for the effects of topography and atmospheric state on the spatial variability of FMC. At each location of interest, the TSM provides a pseudo-observation, which is assimilated via Kalman filtering. The method is tested with the time lag fuel moisture model in the coupled weather-fire code WRF-SFIRE on 10-h FMC observations from Colorado RAWS in 2013. Using leave-one-out testing we show that the TSM compares favourably with inverse squared distance interpolation as used in the Wildland Fire Assessment System. Finally, we demonstrate that the data assimilation method is able to improve on FMC estimates in unobserved fuel classes.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print