SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Lasslop G, Hantson S, Kloster S. Int. J. Wildland Fire 2015; 24(7): 989-1000.

Copyright

(Copyright © 2015, International Association of Wildland Fire, Fire Research Institute, Publisher CSIRO Publishing)

DOI

10.1071/WF15052

PMID

unavailable

Abstract

Understanding of fire behaviour, especially fire spread, is mostly based on local-scale observations but the same equations are applied in global models on a much coarser scale. Most model formulations include the effect of wind speed with a positive influence on fire spread. Availability of global datasets offers new possibilities to evaluate these approaches based on local-scale observations at the global scale. Here, we analyse the relation between wind speed derived from three datasets and remotely sensed burned fraction (burned area divided by grid cell area) on a climate model grid scale. The bivariate relationship between burned fraction and wind speed is characterised by an initial increase in burned fraction and a decrease in burned fraction for wind speeds higher than 2-3 ms-1. In a multivariate analysis we additionally included the effect of tree cover, precipitation or atmospheric moisture, temperature, vegetation net primary productivity and population density on burned fraction. This analysis confirmed the lack of an increase in burned fraction for high wind speeds on annual and daily time scale. From the observation-based analysis we conclude that a positive response of burned fraction for high wind speed should not be applied in coarse-scale global fire models.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print