SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Dahale A, Shotorban B, Mahalingam S. Int. J. Wildland Fire 2015; 24(5): 624-639.

Copyright

(Copyright © 2015, International Association of Wildland Fire, Fire Research Institute, Publisher CSIRO Publishing)

DOI

10.1071/WF14089

PMID

unavailable

Abstract

A physics-based computational model was utilised to better understand the interactions of fires generated by burning of neighbouring shrubs. The model included large-eddy simulation for flow field turbulence and a two-phase approach for the coupling of solid fuel and gas phases. Two different arrangements consisting of two and three identical shrubs placed adjacent to each other were considered. All shrubs were simultaneously ignited from their base with the aid of separate ground fuels. Both crown and ground fuels were modelled as porous media with thermophysical properties of chamise and excelsior respectively. Modelling results indicated that the peak mass-loss rate and the vertical fire spread rate within a shrub decrease when the shrub separation distance increases. At zero separation, heat release rate normalised by the number of shrubs is enhanced by 5 and 15% for the two-shrub and the three-shrub arrangements, respectively. Generation of strong vorticity by higher gravitational torque appeared to be the cause for enhanced burning in the three-shrub arrangement. This effect was seen to be much weaker for the two-shrub arrangement. Interactions between the individual fires cease for a centre-to-centre distance of 1.5 and 2 times the shrub diameter for the two-shrub and the three-shrub arrangement respectively.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print