SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Nelson KN, Turner MG, Romme WH, Tinker DB. Int. J. Wildland Fire 2017; 26(10): 852-865.

Copyright

(Copyright © 2017, International Association of Wildland Fire, Fire Research Institute, Publisher CSIRO Publishing)

DOI

10.1071/WF16226

PMID

unavailable

Abstract

Early-seral forests are expanding throughout western North America as fire frequency and annual area burned increase, yet fire behaviour in young postfire forests is poorly understood. We simulated fire behaviour in 24-year-old lodgepole pine (Pinus contorta var. latifolia) stands in Yellowstone National Park, Wyoming, United States using operational models parameterised with empirical fuel characteristics, 50-99% fuel moisture conditions, and 1-60kmhr−1 open winds to address two questions: [1] How does fireline intensity, and crown fire initiation and spread vary among young, lodgepole pine stands? [2] What are the contributions of fuels, moisture and wind on fire behaviour? Sensitivity analysis indicated the greatest contributors to output variance were stand structure mediated wind attenuation, shrub fuel loads and 1000-h fuel moisture for fireline intensity; crown base height for crown fire initiation; and crown bulk density and 1-h fuel moisture for crown fire spread. Simulation results predicted crown fire (e.g. passive, conditional or active types) in over 90% of stands at 50th percentile moisture conditions and wind speeds greater than 3kmhr−1. We conclude that dense canopy characteristics heighten crown fire potential in young, postfire lodgepole pine forests even under less than extreme wind and fuel moisture conditions.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print