SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Raposo JR, Viegas DX, Xie X, Almeida M, Figueiredo AR, Porto L, Sharples J. Int. J. Wildland Fire 2018; 27(1): 52-68.

Copyright

(Copyright © 2018, International Association of Wildland Fire, Fire Research Institute, Publisher CSIRO Publishing)

DOI

10.1071/WF16173

PMID

unavailable

Abstract

Junction fires, which involve the merging of two linear fire fronts intersecting at a small angle, are associated with very intense fire behaviour. The dynamic displacement of the intersection point of the two lines and the flow along the symmetry plane of the fire are analysed for symmetric boundary conditions. It is observed that the velocity of displacement of this point increases very rapidly owing to strong convective effects created by the fire that are similar to those of an eruptive fire. The change of fire geometry and of its associated flow gradually blocks the rate of spread increase and creates a strong deceleration of the fire, which ends up behaving like a linear fire front.

RESULTS from laboratory and field-scale experiments, using various fuel beds and slope angles and from a large-scale fire show that the processes are similar at a wide range of scales with little dependence on the initial boundary conditions. Numerical simulation of the heat flux from two flame surfaces to an element of the fuel bed show that radiation can be considered as the main mechanism of fire spread only during the deceleration phase of the fire.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print