SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Ling L, Dhanasekar M, Thambiratnam DP. Veh. Syst. Dyn. 2018; 56(4): 638-657.

Copyright

(Copyright © 2018, Informa - Taylor and Francis Group)

DOI

10.1080/00423114.2017.1398341

PMID

unavailable

Abstract

Derailments on bridges, although not frequent, when occurs due to a complex dynamic interaction of the train-track-bridge structural system, are very severe. Furthermore, the forced vibration induced by the post-derailment impacts can toss out the derailed wagons from the bridge deck with severe consequences to the traffic underneath and the safety of the occupants of the wagons. This paper presents a study of the train-track-bridge interaction during a heavy freight train crossing a concrete box girder bridge from a normal operation to a derailed state. A numerical model that considers the bridge vibration, train-track interaction and the train post-derailment behaviour is formulated based on a coupled finite-element - multi-body dynamics (FE-MBD) theory. The model is applied to predict the post-derailment behaviour of a freight train composed of one locomotive and several wagons, as well as the dynamic response of a straight single-span simply supported bridge containing ballast track subjected to derailment impacts. For this purpose, a typical derailment scenario of a heavy freight train passing over a severe track geometry defect is introduced. The dynamic derailment behaviour of the heavy freight train and the dynamic responses of the rail bridge are illustrated through numerical examples. The results exhibit the potential for tossing out of the derailed trains from the unstable increase in the yaw angle signature and a lower rate of increase of the bridge deck bending moment compared to the increase in the static axle load of the derailed wheelset.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print