SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Ryerson MS, Miller JE, Winston FK. Inj. Prev. 2019; 25(2): 76-79.

Affiliation

Division of General Pediatrics, Department of Pediatrics, University of Pennsylvania Perlman, School of Medicine, Philadelphia, Pennsylvania, USA.

Copyright

(Copyright © 2019, BMJ Publishing Group)

DOI

10.1136/injuryprev-2017-042567

PMID

29353244

Abstract

Self-driving or highly automated vehicle (HAV) technologies, now undergoing public trials in major cities,1 are positioned to bring about transformative change to the entire transportation system. Far from being a distant innovation, retail autonomous vehicles have already been announced by various manufacturers for release as early as 2018, complementing estimates that on-road HAVs will reach market ubiquity as part of a US$7 trillion passenger economy by 2055.2 Transportation planners and policymakers are welcoming HAVs for their potential to positively impact traffic safety by fundamentally changing the interaction and relationship between drivers and vehicles, and how drivers and vehicles collect and process information from their environment. HAVs will not, however, offer safety in every possible condition. As HAV technology will have limits, manufacturers and lawmakers suggest vehicles have an operational design domain (ODD) which specifies under which conditions an autonomous driving mode can perform safely.3 ODDs may require HAVs to avoid mixed vehicle routes, inclement weather conditions or unmarked roads; in general, ODDs reflect the limits of HAV technologies. In engineering terms, these are known as ‘edge conditions’: situations that go beyond the reliable and accurate capability and limits of HAV technology. The injury prevention community must understand how these edge conditions could lead to crashes in order to formulate crash countermeasures which ultimately inform vehicle development standards and training.

The Haddon Matrix, the long-established safety paradigm for injury prevention, has a rich history of helping those focused on transportation safety explicitly separate roles and responsibilities of all drivers, technologies and environmental factors involved in a crash event.4 A new framework and modification of the Haddon Matrix is needed as man–machine–environment interactions will be facilitated by technology and roles in preventing a crash event will be much more shared. While one could argue that the Haddon Matrix was …


Language: en

Keywords

interventions: engineering; interventions: equipment; mechanism: motor vehicle - occupant; methodology: haddon matrix

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print