SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Fu W. J. Am. Stat. Assoc. 2016; 111(513): 180-199.

Copyright

(Copyright © 2016, American Statistical Association)

DOI

10.1080/01621459.2014.998761

PMID

unavailable

Abstract

This article considers a regression model on a Lexis diagram of an a × p table with a single response in each cell following a distribution in the exponential family. A regression model on the fixed effects of a rows, p columns, and a + p − 1 diagonals induces a singular design matrix and yields multiple estimators, leading to parameter identifiability problem in age-period-cohort analysis in social sciences, demography, and epidemiology, where assessment of secular trend in age, period, and birth cohort of social events (e.g., violence) and diseases (e.g., cancer) is of interest. Similar problems also exist in other settings, such as in supersaturated designs. In this article, we study the finite sample properties of the multiple estimators, propose a penalized profile likelihood method to study the consistency and asymptotic bias, and demonstrate the results through simulations and data analysis. As a by-product, the identifiability problem is addressed with consistent estimation for model parameters and secular trend. We conclude that consistent estimation can be identified through estimable function and asymptotics studies in regressions with a singular design. Our method provides a novel approach to studying asymptotics of multiple estimators with a diverging number of nuisance parameters.


Language: en

Keywords

Asymptotics; Bias; Identifiability; Penalized profile likelihood; Sensitivity.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print