SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Liang C, Ghazel M, Cazier O, El-Koursi EM. Safety Sci. 2018; 101: 48-59.

Copyright

(Copyright © 2018, Elsevier Publishing)

DOI

10.1016/j.ssci.2017.08.013

PMID

unavailable

Abstract

Railway level crossing (LX) safety continues to be one of the most critical issues for railways, despite an ever-increasing focus on improving design and application practices. Accidents at European LXs account for about one-third of the entire railway accidents and result in more than 300 deaths every year in Europe. Due to the non-deterministic causes, the complex operation background and the lack of thorough statistical analysis based on accident/incident data, the risk assessment of LXs remains a challenging task. In the present paper, some LX accident prediction models are developed. Such models allow for highlighting the influence of the main impacting parameters, i.e., the average daily road traffic, the average daily railway traffic, the annual road accidents, the vertical road profile, the horizontal road alignment, the road width, the crossing length, the railway speed limit and the geographic region. The Ordinary Least-Squares (OLS) and Nonlinear Least-Squares (NLS) methods are employed to estimate the respective coefficients of variables in the prediction models, based on the LX accident/incident data. The validation and comparison process is performed through statistical means to examine how well the estimation of the models fits the reality. The outcomes of validation and comparison attest that the improved accident prediction model has statistic-based approbatory quality. Moreover, the improved accident prediction model combined with the NB distribution shows relatively high predictive accuracy of the probability of accident occurrence.


Language: en

Keywords

Statistical analysis; Accident prediction modeling; Level crossing safety; Train-car collision

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print