SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Mann ME, Lloyd EA, Oreskes N. Clim. Change 2017; 144(2): 131-142.

Copyright

(Copyright © 2017, Holtzbrinck Springer Nature Publishing Group)

DOI

10.1007/s10584-017-2048-3

PMID

unavailable

Abstract

The conventional approach to detecting and attributing climate change impacts on extreme weather events is generally based on frequentist statistical inference wherein a null hypothesis of no influence is assumed, and the alternative hypothesis of an influence is accepted only when the null hypothesis can be rejected at a sufficiently high (e.g., 95% or "p = 0.05") level of confidence. Using a simple conceptual model for the occurrence of extreme weather events, we show that if the objective is to minimize forecast error, an alternative approach wherein likelihoods of impact are continually updated as data become available is preferable. Using a simple "proof-of-concept," we show that such an approach will, under rather general assumptions, yield more accurate forecasts. We also argue that such an approach will better serve society, in providing a more effective means to alert decision-makers to potential and unfolding harms and avoid opportunity costs. In short, a Bayesian approach is preferable, both empirically and ethically.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print