SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Tasoulis T, Isbister GK. Toxins (Basel) 2017; 9(9): e9090290.

Affiliation

Clinical Toxicology Research Group, University of Newcastle, Newcastle 2298, Australia. geoff.isbister@gmail.com.

Copyright

(Copyright © 2017, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/toxins9090290

PMID

28927001

Abstract

Advances in the last decade combining transcriptomics with established proteomics methods have made possible rapid identification and quantification of protein families in snake venoms. Although over 100 studies have been published, the value of this information is increased when it is collated, allowing rapid assimilation and evaluation of evolutionary trends, geographical variation, and possible medical implications. This review brings together all compositional studies of snake venom proteomes published in the last decade. Compositional studies were identified for 132 snake species: 42 from 360 (12%) Elapidae (elapids), 20 from 101 (20%) Viperinae (true vipers), 65 from 239 (27%) Crotalinae (pit vipers), and five species of non-front-fanged snakes. Approximately 90% of their total venom composition consisted of eight protein families for elapids, 11 protein families for viperines and ten protein families for crotalines. There were four dominant protein families: phospholipase A₂s (the most common across all front-fanged snakes), metalloproteases, serine proteases and three-finger toxins. There were six secondary protein families: cysteine-rich secretory proteins, l-amino acid oxidases, kunitz peptides, C-type lectins/snaclecs, disintegrins and natriuretic peptides. Elapid venoms contained mostly three-finger toxins and phospholipase A₂s and viper venoms metalloproteases, phospholipase A₂s and serine proteases. Although 63 protein families were identified, more than half were present in <5% of snake species studied and always in low abundance. The importance of these minor component proteins remains unknown.


Language: en

Keywords

elapid; proteomics; snakes; toxins; venom; viper

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print