SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Sun L, Zhao M, Liu M, Su P, Zhang J, Li Y, Yang X, Wu Z. Behav. Brain Res. 2017; 337: 271-279.

Affiliation

Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China.

Copyright

(Copyright © 2017, Elsevier Publishing)

DOI

10.1016/j.bbr.2017.08.042

PMID

28889023

Abstract

Traumatic brain injury (TBI) is a serious insult that frequently leads to neurological impairments. Forkhead box O (FoxO) 3a, as transcription factor, has been confirmed to modulate autophagic process. Moreover, FoxO3a is expressed throughout the brain including the hippocampus. However, the role of FoxO3a in the pathophysiology of TBI is unclear. The present study is designed to investigate whether FoxO3a has the neuroprotective effects on rats subjected to TBI, and further to explore the potential molecular mechanisms. Thus, a rat model of TBI was created by using a modified weight-drop device to mimic the insults of TBI. The results showed that FoxO3a was significantly increased in the serum of patients with TBI as well as in experimental animals. Furthermore, our data also demonstrated that TBI stimulated the translocation of FoxO3a from the cytosol to the nucleus. Additionally, we found that knockdown of FoxO3a by siRNA silencing significantly improved neurobehavioral dysfunctions and conferred a better neuroprotective effects after TBI, evidenced by promoting motor behavioral recovery, attenuating learning and memory impairments, and partially reversing neuronal damage in the hippocampus. To further investigate the molecular mechanisms underlying this neuroprotection, we identified that nuclear accumulation of Foxo3a could induce highly expression of autophagy pathway genes including LC-3, Beclin-1, p62, ATG12, and ATG14, and finally initiate neurological impairments. Interestingly, silencing FoxO3a by siRNA remarkably inhibited the induction of neuronal autophagy after TBI, and activated autophagy was closely related to TBI-induced neurological deficits. Taken together, these findings indicated that FoxO3a knockdown conferred neuroprotective effects after TBI through inhibiting the activation of neuronal autophagy.

Copyright © 2017. Published by Elsevier B.V.


Language: en

Keywords

Autophagy; FoxO3a; Neurobehavioral deficits; Neuron; Traumatic brain injury

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print