SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Bhatty M, Tan W, Basco M, Pruett S, Nanduri B. Alcohol 2017; 63: 9-17.

Affiliation

Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA.

Copyright

(Copyright © 2017, Elsevier Publishing)

DOI

10.1016/j.alcohol.2016.11.007

PMID

28847384

Abstract

Alcohol abuse increases vulnerability to infections and infection-related mortality. In previous studies, we found that acute alcohol abuse in a binge-drinking model in mice decreased resistance to bacterial sepsis when alcohol was administered near the time of bacterial challenge. In the present study, we investigated the effects of alcohol administered later in the course of sepsis (18 h after injection of Escherichia coli). Our working hypothesis was that decreased production of cytokines caused by alcohol at this time would actually improve survival, because overproduction of pro-inflammatory mediators is thought to be the proximate cause of mortality in sepsis. Unexpectedly, administration of alcohol late in the course of sepsis led to a rapid increase in the number of viable bacteria in the peritoneal cavity. Significant increases in the concentrations of several cytokines and chemokines coincided with the increased number of bacteria in alcohol-treated mice and decreased survival time. These results demonstrated our working hypothesis to be incorrect, and reiterated the complexity of sepsis. Hypothermia is a consistent feature in this model of sepsis. In control mice (E. coli only), body temperature was near normal by 18 h or 21 h after administration of E. coli, but in mice treated with alcohol 18 h after E. coli, hypothermia was significant 3 h later and ultimately mortality was significantly increased. However, counteracting the hypothermic effect of alcohol by external warming of mice led to earlier mortality, demonstrating that hypothermia was not the major cause of mortality. These results, along with previous results from studies in which alcohol was given before initiation of sepsis, suggest that decreased cytokine and chemokine production may not be the key effect of alcohol that decreases resistance to sepsis. It seems more likely that suppression of mechanisms by which macrophages and neutrophils kill bacteria is critical, and this can occur even in the presence of high levels of cytokines and chemokines.

Copyright © 2016 Elsevier Inc. All rights reserved.


Language: en

Keywords

Cytokine; Escherichia coli; Immunosuppression; Macrophage; Septic shock

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print