SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Cohen AL, Kang N, Leise TL. Cogn. Psychol. 2017; 98: 45-72.

Affiliation

Amherst College, United States.

Copyright

(Copyright © 2017, Elsevier Publishing)

DOI

10.1016/j.cogpsych.2017.08.001

PMID

28843070

Abstract

The first aim of this research is to compare computational models of multi-alternative, multi-attribute choice when attribute values are explicit. The choice predictions of utility (standard random utility & weighted valuation), heuristic (elimination-by-aspects, lexicographic, & maximum attribute value), and dynamic (multi-alternative decision field theory, MDFT, & a version of the multi-attribute linear ballistic accumulator, MLBA) models are contrasted on both preferential and risky choice data. Using both maximum likelihood and cross-validation fit measures on choice data, the utility and dynamic models are preferred over the heuristic models for risky choice, with a slight overall advantage for the MLBA for preferential choice. The response time predictions of these models (except the MDFT) are then tested. Although the MLBA accurately predicts response time distributions, it only weakly accounts for stimulus-level differences. The other models completely fail to account for stimulus-level differences. Process tracing measures, i.e., eye and mouse tracking, were also collected. None of the qualitative predictions of the models are completely supported by that data. These results suggest that the models may not appropriately represent the interaction of attention and preference formation. To overcome this potential shortcoming, the second aim of this research is to test preference-formation assumptions, independently of attention, by developing the models of attentional sampling (MAS) model family which incorporates the empirical gaze patterns into a sequential sampling framework. An MAS variant that includes attribute values, but only updates the currently viewed alternative and does not contrast values across alternatives, performs well in both experiments. Overall, the results support the dynamic models, but point to the need to incorporate a framework that more accurately reflects the relationship between attention and the preference-formation process.

Copyright © 2017 Elsevier Inc. All rights reserved.


Language: en

Keywords

Computational modeling; Decision making; Process tracing; Response time

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print