SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Harik G, El-Fadel M, Shihadeh A, Alameddine I, Hatzopoulou M. Transp. Res. D Trans. Environ. 2017; 54: 225-238.

Copyright

(Copyright © 2017, Elsevier Publishing)

DOI

10.1016/j.trd.2017.05.009

PMID

unavailable

Abstract

In-cabin exposure has increased in recent years due to longer commute and/or prolonged times in cars. The intrusion of the vehicle's own exhaust into the passenger's compartment has been recognized as a process that amplifies in-cabin passenger exposure. Quantifying its contribution is hampered by uncertainties associated with its measurement method such as trace tests and the lack of data regarding certain critical physical parameters, particularly those pertaining to air exchange rate (AER) and particulate matter deposition rate (DR). In this study, we present a hybrid methodology combining field measurements with a single-zone mass balance to estimate these parameters as well as the source term that represents vehicle self-pollution. In- and out-vehicle carbon monoxide (CO) and fine particulate matter (PM2.5) were monitored concurrently in test vehicles under idle and moving conditions using several common ventilation modes. In addition to defining a hybrid methodology to characterize the underlying physical parameters, this study found that vehicle self-pollution can account for approximately 15 and 30% of CO and PM2.5 exposure experienced by vehicle occupants respectively. Vehicle self-exhaust intrusion may constitute a significant PM exposure route for vehicle-based occupations or commuters with prolonged time in vehicles.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print