SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Droghini D, Ferretti D, Principi E, Squartini S, Piazza F. Comput. Intell. Neurosci. 2017; 2017: e1512670.

Affiliation

Department of Information Engineering, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.

Copyright

(Copyright © 2017, Hindawi Publishing)

DOI

10.1155/2017/1512670

PMID

28638405

PMCID

PMC5468803

Abstract

The primary cause of injury-related death for the elders is represented by falls. The scientific community devoted them particular attention, since injuries can be limited by an early detection of the event. The solution proposed in this paper is based on a combined One-Class SVM (OCSVM) and template-matching classifier that discriminate human falls from nonfalls in a semisupervised framework. Acoustic signals are captured by means of a Floor Acoustic Sensor; then Mel-Frequency Cepstral Coefficients and Gaussian Mean Supervectors (GMSs) are extracted for the fall/nonfall discrimination. Here we propose a single-sensor two-stage user-aided approach: in the first stage, the OCSVM detects abnormal acoustic events. In the second, the template-matching classifier produces the final decision exploiting a set of template GMSs related to the events marked as false positives by the user. The performance of the algorithm has been evaluated on a corpus containing human falls and nonfall sounds. Compared to the OCSVM only approach, the proposed algorithm improves the performance by 10.14% in clean conditions and 4.84% in noisy conditions. Compared to Popescu and Mahnot (2009) the performance improvement is 19.96% in clean conditions and 8.08% in noisy conditions.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print