SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Happee R, Gold C, Radlmayr J, Hergeth S, Bengler K. Accid. Anal. Prev. 2017; 106: 211-222.

Affiliation

Technical University of Munich, Chair of Ergonomics, Boltzmannstraße 15, D-85747 Garching, Germany.

Copyright

(Copyright © 2017, Elsevier Publishing)

DOI

10.1016/j.aap.2017.04.017

PMID

28645018

Abstract

We investigated after effects of automation in take-over scenarios in a high-end moving-base driving simulator. Drivers performed evasive manoeuvres encountering a blocked lane in highway driving. We compared the performance of drivers 1) during manual driving, 2) after automated driving with eyes on the road while performing the cognitively demanding n-back task, and 3) after automated driving with eyes off the road performing the visually demanding SuRT task. Both minimum time to collision (TTC) and minimum clearance towards the obstacle disclosed a substantial number of near miss events and are regarded as valuable surrogate safety metrics in evasive manoeuvres. TTC proved highly sensitive to the applied definition of colliding paths, and we prefer robust solutions using lane position while disregarding heading. The extended time to collision (ETTC) which takes into account acceleration was close to the more robust conventional TTC. In line with other publications, the initial steering or braking intervention was delayed after using automation compared to manual driving. This resulted in lower TTC values and stronger steering and braking actions. Using automation, effects of cognitive distraction were similar to visual distraction for the intervention time with effects on the surrogate safety metric TTC being larger with visual distraction. However the precision of the evasive manoeuvres was hardly affected with a similar clearance towards the obstacle, similar overshoots and similar excursions to the hard shoulder. Further research is needed to validate and complement the current simulator based results with human behaviour in real world driving conditions. Experiments with real vehicles can disclose possible systematic differences in behaviour, and naturalistic data can serve to validate surrogate safety measures like TTC and obstacle clearance in evasive manoeuvres.

Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.


Language: en

Keywords

Automated driving; Evasive; Fallback; Surrogate safety metric; Take-over; Time to collision

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print