SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Mei Z, Wang D, Chen J, Wang W. Promet 2014; 26(5): 383-391.

Copyright

(Copyright © 2014, Faculty of Traffic and Transport Sciences, University of Zagreb)

DOI

10.7307/ptt.v2615.1343

PMID

unavailable

Abstract

Filtering the data for bicycle travel time using Bluetooth sensors is crucial to the estimation of link travel times on a corridor. The current paper describes an adaptive filtering algorithm for estimating bicycle travel times using Bluetooth data, with consideration of low sampling rates. The data for bicycle travel time using Bluetooth sensors has two characteristics. First, the bicycle flow contains stable and unstable conditions. Second, the collected data have low sampling rates (less than 1%). To avoid erroneous inference, filters are introduced to "purify" multiple time series. The valid data are identified within a dynamically varying validity window with the use of a robust data-filtering procedure. The size of the validity window varies based on the number of preceding sampling intervals without a Bluetooth record. Applications of the proposed algorithm to the dataset from Genshan East Road and Moganshan Road in Hangzhou demonstrate its ability to track typical variations in bicycle travel time efficiently, while suppressing high frequency noise signals.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print