SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Stefani MA, Modkovski R, Hansel G, Zimmer ER, Kopczynski A, Muller AP, Strogulski NR, Rodolphi MS, Carteri RK, Schmidt AP, Oses JP, Smith DH, Portela LV. Ann. Clin. Transl. Neurol. 2017; 4(6): 392-402.

Affiliation

Laboratory of NeurotraumaDepartment of BiochemistryPost-graduation Program in BiochemistryFederal University of Rio Grande do Sul (UFRGS)Porto AlegreRSBrazil.

Copyright

(Copyright © 2017, American Neurological Association, Publisher John Wiley and Sons)

DOI

10.1002/acn3.416

PMID

28589166

PMCID

PMC5454398

Abstract

OBJECTIVE: Clinical neurological assessment is challenging for severe traumatic brain injury (TBI) patients in the acute setting. Waves of neurochemical abnormalities that follow TBI may serve as fluid biomarkers of neurological status. We assessed the cerebrospinal fluid (CSF) levels of glutamate, lactate, BDNF, and GDNF, to identify potential prognostic biomarkers of neurological outcome.

METHODS: This cross-sectional study was carried out in a total of 20 consecutive patients (mean [SD] age, 29 [13] years; M/F, 9:1) with severe TBI Glasgow Coma Scale ≤ 8 and abnormal computed tomography scan on admission. Patients were submitted to ventricular drainage and had CSF collected between 2 and 4 h after hospital admission. Patients were then stratified according to two clinical outcomes: deterioration to brain death (nonsurvival, n = 6) or survival (survival, n = 14), within 3 days after hospital admission. CSF levels of brain-derived substances were compared between nonsurvival and survival groups. Clinical and neurological parameters were also assessed.

RESULTS: Glutamate and lactate are significantly increased in nonsurvival relative to survival patients. We tested the accuracy of both biomarkers to discriminate patient outcome. Setting a cutoff of >57.75, glutamate provides 80.0% of sensitivity and 84.62% of specificity (AUC: 0.8214, 95% CL: 54.55-98.08%; and a cutoff of >4.65, lactate has 100% of sensitivity and 85.71% of specificity (AUC: 0.8810, 95% CL: 54.55-98.08%). BDNF and GDNF did not discriminate poor outcome.

INTERPRETATION: This early study suggests that glutamate and lactate concentrations at hospital admission accurately predict death within 3 days after severe TBI.


Language: en

Keywords

Traumatic brain injury; glutamate; lactate

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print