SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Li X, Li L, Flohr F, Wang J, Xiong H, Bernhard M, Pan S, Gavrila DM, Li K. IEEE Trans. Intel. Transp. Syst. 2017; 18(2): 269-281.

Copyright

(Copyright © 2017, IEEE (Institute of Electrical and Electronics Engineers))

DOI

10.1109/TITS.2016.2567418

PMID

unavailable

Abstract

Extensive research interest has been focused on protecting vulnerable road users in recent years, particularly pedestrians and cyclists, due to their attributes of vulnerability. However, comparatively little effort has been spent on detecting pedestrian and cyclist together, particularly when it concerns quantitative performance analysis on large datasets. In this paper, we present a unified framework for concurrent pedestrian and cyclist detection, which includes a novel detection proposal method (termed UB-MPR) to output a set of object candidates, a discriminative deep model based on Fast R-CNN for classification and localization, and a specific postprocessing step to further improve detection performance. Experiments are performed on a new pedestrian and cyclist dataset containing 30 490 annotated pedestrian and 26 771 cyclist instances in over 50 000 images, recorded from a moving vehicle in the urban traffic of Beijing. Experimental results indicate that the proposed method outperforms other state-of-the-art methods significantly. © 2017, Institute of Electrical and Electronics Engineers.

KEYWORDS: Bicycles; Bicyclists; Bicycling


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print