SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Gong S, Du L. Transp. Res. B Methodol. 2016; 84: 1-30.

Copyright

(Copyright © 2016, Elsevier Publishing)

DOI

10.1016/j.trb.2015.12.001

PMID

unavailable

Abstract

Improper mandatory lane change (MLC) maneuvers in the vicinity of highway off-ramp will jeopardize traffic efficiency and safety. Providing an advance warning for lane change necessity is one of the efficient methods to perform systematic lane change management, which encourages smooth MLC maneuvers occurring at proper locations to mitigate the negative effects of MLC maneuvers on traffic flow nearby off-ramp. However, the state of the art indicates the lack of rigorous methods to optimally locate this advance warning so that the maximum benefit can be obtained. This research is motivated to address this gap. Specifically, the proposed approach considers that the area downstream of the advance warning includes two zones: (i) the green zone whose traffic ensures safe and smooth lane changes without speed deceleration (S-MLC); the start point of the green zone corresponding to the location of the advance warning; (ii) the yellow zone whose traffic leads to rush lane change maneuvers with speed deceleration (D-MLC). An optimization model is proposed to search for the optimal green and yellow zones. Traffic flow theory such as Greenshield model and shock wave analysis are used to analyze the impacts of the S-MLC and D-MLC maneuvers on the traffic delay. A grid search algorithm is applied to solve the optimization model. Numerical experiments conducted on the simulation model developed in Paramics 6.9.3 indicate that the proposed optimization model can identify the optimal location to set the advance MLC warning nearby an off-ramp so that the traffic delay resulting from lane change maneuvers is minimized, and the corresponding capacity drop and traffic oscillation can be efficiently mitigated. Moreover, the experiments validated the consistency of the green and yellow zones obtained in the simulation traffic flow and from the optimization model for a given optimally located MLC advance warning under various traffic regimes. The proposed approach can be implemented by roadside mobile warning facility or on-board GPS for human-driven vehicles, or embedded into lane change aid systems to serve connected and automated vehicles. Thus it will greatly contribute to both literature and engineering practice in lane change management.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print