SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Yi S, Wang X, Lu C, Jia J, Li H. IEEE Trans. Pattern Anal. Mach. Intell. 2016; 39(5): 981-994.

Copyright

(Copyright © 2016, Institute of Electrical and Electronics Engineers, Publisher IEEE (Institute of Electrical and Electronics Engineers))

DOI

10.1109/TPAMI.2016.2560807

PMID

28113539

Abstract

In this paper, we tackle the problem of stationary crowd analysis which is as important as modeling mobile groups in crowd scenes and finds many important applications in crowd surveillance. Our key contribution is to propose a robust algorithm for estimating how long a foreground pixel becomes stationary. It is much more challenging than only subtracting background because failure at a single frame due to local movement of objects, lighting variation, and occlusion could lead to large errors on stationary-time estimation. To achieve robust and accurate estimation, sparse constraints along spatial and temporal dimensions are jointly added by mixed partials (which are second-order gradients) to shape a 3D stationary-time map. It is formulated as an L0 optimization problem. Besides background subtraction, it distinguishes among different foreground objects, which are close or overlapped in the spatio-temporal space by using a locally shared foreground codebook. The proposed technologies are further demonstrated through three applications. 1) Based on the results of stationary-time estimation, twelve descriptors are proposed to detect four types of stationary crowd activities. 2) The averaged stationary-time map is estimated to analyze crowd scene structures. 3) The result of stationary-time estimation is also used to study the influence of stationary crowd groups to traffic patterns.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print