SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Wang J, Sun S, Fang S, Fu T, Stipancic J. Accid. Anal. Prev. 2017; 99: 321-329.

Affiliation

Department of Civil Engineering and Applied Mechanics, McGill University, Canada. Electronic address: joshua.stipancic@mail.mcgill.ca.

Copyright

(Copyright © 2017, Elsevier Publishing)

DOI

10.1016/j.aap.2016.12.014

PMID

28038346

Abstract

This paper aims to both identify the factors affecting driver drowsiness and to develop a real-time drowsy driving probability model based on virtual Location-Based Services (LBS) data obtained using a driving simulator. A driving simulation experiment was designed and conducted using 32 participant drivers. Collected data included the continuous driving time before detection of drowsiness and virtual LBS data related to temperature, time of day, lane width, average travel speed, driving time in heavy traffic, and driving time on different roadway types. Demographic information, such as nap habit, age, gender, and driving experience was also collected through questionnaires distributed to the participants. An Accelerated Failure Time (AFT) model was developed to estimate the driving time before detection of drowsiness. The results of the AFT model showed driving time before drowsiness was longer during the day than at night, and was longer at lower temperatures. Additionally, drivers who identified as having a nap habit were more vulnerable to drowsiness. Generally, higher average travel speeds were correlated to a higher risk of drowsy driving, as were longer periods of low-speed driving in traffic jam conditions. Considering different road types, drivers felt drowsy more quickly on freeways compared to other facilities. The proposed model provides a better understanding of how driver drowsiness is influenced by different environmental and demographic factors. The model can be used to provide real-time data for the LBS-based drowsy driving warning system, improving past methods based only on a fixed driving.

Copyright © 2016 Elsevier Ltd. All rights reserved.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print