SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Hahn CA, O'Toole AJ. Neuroimage 2016; 146: 859-868.

Affiliation

The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, USA, 75080.

Copyright

(Copyright © 2016, Elsevier Publishing)

DOI

10.1016/j.neuroimage.2016.10.042

PMID

27989842

Abstract

In natural viewing environments, we recognize other people as they move through the world. Behavioral studies indicate that the face, body, and gait all contribute to recognition. We examined the neural basis of person recognition using a decoding approach aimed at discriminating the patterns of neural activity elicited in response to seeing visually familiar versus unfamiliar people in motion. Participants learned 30 identities by viewing multiple videos of the people in action. Recognition was tested inside a functional magnetic resonance imaging (fMRI) scanner using 8-second videos of 60 people (30 learned and 30 novel) approaching from a distance (~13 m). Full brain images were taken while participants watched the approach. These images captured neural activity at four time points (TRs) corresponding to progressively closer views of the walker. We used pattern classification techniques to examine familiarity decoding in lateralized ROIs and the combination of left and right (bilateral) regions.

RESULTS showed accurate decoding of familiarity at the farthest distance in the bilateral posterior superior temporal sulcus (bpSTS). At a closer distance, familiarity was decoded in the bilateral extrastriate body area (bEBA) and left fusiform body area (lFBA). The most robust decoding was found in the time window during which the average behavioral recognition decision was made-and when the face came into clearer view. Multiple regions, including the right occipital face area (rOFA), bOFA, bFBA, bpSTS, and broadly distributed face- and body-selective voxels in the ventral temporal cortex decoded walker familiarity in this time window. At the closest distance, the lFBA decoded familiarity. These results reveal a broad system of ventral and dorsal visual areas that support person recognition from face, body, and gait. Although the face has been the focus of most person recognition studies, these findings remind us of the evolutionary advantage of being able to differentiate the people we know from strangers at a safe distance.

Copyright © 2016. Published by Elsevier Inc.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print