SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Hladik D, Tapio S. Mutat. Res. 2016; 770: 219-230.

Affiliation

Helmholtz Zentrum München, German Research Center for Enviromental Health GmbH, Institute of Radiation Biology, Ingolstädter Landstrasse 1, Neuherberg, 85764 Germany; Technical University Munich, Arcisstrasse 21, Munich, 80333 Germany. Electronic address: soile.tapio@helmholtz-muenchen.de.

Copyright

(Copyright © 2016, Elsevier Publishing)

DOI

10.1016/j.mrrev.2016.08.003

PMID

27919332

Abstract

Epidemiological studies on the atomic-bomb survivors, cancer survivors and occupational cohorts provide strong evidence for multifaceted damage to brain after ionizing radiation. Radiation-induced late effects may manifest as brain tumors or cognitive impairment. Decreased neurogenesis and differentiation, alteration in neural structure and synaptic plasticity as well as increased oxidative stress and inflammation are suggested to contribute to adverse effects in the brain. In addition to neural stems cells, several brain-specific mature cell types including endothelial and glial cells are negatively affected by ionizing radiation. Radiation-induced enhancement of endothelial cell apoptosis results in disruption of the vascular system and the blood brain barrier. Activated microglia create inflammatory environment that negatively affects neuronal structures and results in decreased synaptic plasticity. Although the molecular mechanisms involved in radiation-induced brain injury remain elusive, first strategies for prevention and amelioration are being developed. Drug-based prevention and treatment focus mainly on the inhibition of oxidative stress and inflammation. Cell replacement therapy holds great promise as first animal studies using transplantation of neural stem cells to irradiated brain have been successful in restoring memory and cognition deficits. This review summarizes the epidemiological and biological data on radiation-induced brain damage and describes prevention and therapy methods to avoid and ameliorate these adverse effects, respectively.

Copyright © 2016 Elsevier B.V. All rights reserved.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print