SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Hu J, Hu S, Maisano JR, Chao HH, Zhang S, Li CR. Front. Hum. Neurosci. 2016; 10: e546.

Affiliation

Department of Psychiatry, Yale University School of MedicineNew Haven, CT, USA; Department of Neuroscience, Yale University School of MedicineNew Haven, CT, USA; Interdepartmental Neuroscience Program, Yale University School of MedicineNew Haven, CT, USA.

Copyright

(Copyright © 2016, Frontiers Research Foundation)

DOI

10.3389/fnhum.2016.00546

PMID

27857686

PMCID

PMC5093128

Abstract

Proactive control allows us to maneuver a changing environment and individuals are distinct in how they anticipate and approach such changes. Here, we examined how individual differences in personality traits influence cerebral responses to conflict anticipation, a critical process of proactive control. We explored this issue in an fMRI study of the stop signal task, in which the probability of stop signal - p(Stop) - was computed trial by trial with a Bayesian model. Higher p(Stop) is associated with prolonged go trial reaction time, indicating conflict anticipation and proactive control of motor response. Regional brain activations to conflict anticipation were correlated to novelty seeking (NS), harm avoidance (HA), reward dependence, as assessed by the Tridimensional Personality Questionnaire, with age and gender as covariates, in a whole-brain linear regression.

RESULTS showed that increased anticipation of the stop signal is associated with activations in the bilateral inferior parietal lobules (IPL), right lateral orbitofrontal cortex (lOFC), middle frontal gyrus (MFG), anterior pre-supplementary motor area (pre-SMA), and bilateral thalamus, with men showing greater activation in the IPL than women. NS correlated negatively to activity in the anterior pre-SMA, right IPL, and MFG/lOFC, and HA correlated negatively to activity in the thalamus during conflict anticipation. In addition, the negative association between NS and MFG/lOFC activity was significant in men but not in women. Thus, NS and HA traits are associated with reduced mobilization of cognitive control circuits when enhanced behavioral control is necessary. The findings from this exploratory study characterize the influence of NS and HA on proactive control and provide preliminary evidence for gender differences in these associations.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print