SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Rinehart DJ, Oronce C, Durfee MJ, Ranby KW, Batal HA, Hanratty R, Vogel J, Johnson TL. Med. Care. 2018; 56(1): e1-e9.

Affiliation

*Denver Health and Hospital Authority, Denver, CO †Department of Medicine, Strong Memorial Hospital, University of Rochester Medical Center, Rochester, NY ‡Department of Psychology, University of Colorado Denver, Denver, CO.

Copyright

(Copyright © 2018, American Public Health Association, Publisher Lippincott Williams and Wilkins)

DOI

10.1097/MLR.0000000000000628

PMID

27632768

Abstract

BACKGROUND: Patients with repeated hospitalizations represent a group with potentially avoidable utilization. Recent publications have begun to highlight the heterogeneity of this group. Latent class analysis provides a novel methodological approach to utilizing administrative data to identify clinically meaningful subgroups of patients to inform tailored intervention efforts.

OBJECTIVE: The objective of the study was to identify clinically distinct subgroups of adult superutilizers. RESEARCH DESIGN: Retrospective cohort analysis. SUBJECTS: Adult patients who had an admission at an urban safety-net hospital in 2014 and 2 or more admissions within the preceding 12 months. MEASURES: Patient-level medical, mental health (MH) and substance use diagnoses, social characteristics, demographics, utilization and charges were obtained from administrative data. Latent class analyses were used to determine the number and characteristics of latent subgroups that best represented these data.

RESULTS: In this cohort (N=1515), a 5-class model was preferred based on model fit indices, clinical interpretability and class size: class 1 (16%) characterized by alcohol use disorder and homelessness; class 2 (14%) characterized by medical conditions, MH/substance use disorders and homelessness; class 3 (25%) characterized primarily by medical conditions; class 4 (13%) characterized by more serious MH disorders, drug use disorder and homelessness; and class 5 (32%) characterized by medical conditions with some MH and substance use. Patient demographics, utilization, charges and mortality also varied by class.

CONCLUSIONS: The overall cohort had high rates of multiple chronic medical conditions, MH, substance use disorders, and homelessness. However, the patterns of these conditions were different between subgroups, providing important information for tailoring interventions.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print