SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Dai Z, Rosen IG, Wang C, Barnett N, Luczak SE. Math. Biosci. Eng. 2016; 13(5): 911-934.

Affiliation

Department of Mathematics, University of Southern California, Los Angeles, CA 90089-2532, United States. email: zhengdai@usc.edu.

Copyright

(Copyright © 2016, American Institute of Mathematical Sciences)

DOI

unavailable

PMID

27775390

Abstract

Alcohol researchers/clinicians have two ways to collect subject /patient field data, standard-drink self-report and the breath analyzer, neither of which is passive or accurate because active subject participation is required. Transdermal alcohol sensors have been developed to measure transdermal alcohol concentration (TAC), but they are used primarily as abstinence monitors because converting TAC into more meaningful blood/breath alcohol concentration (BAC/BrAC) is difficult. In this paper, BAC/BrAC is estimated from TAC by first calibrating forward distributed parameter-based convolution models for ethanol transport from the blood through the skin using patient-collected drinking data for a single drinking episode and a nonlinear pharmacokinetic metabolic absorption/elimination model to estimate BAC. TAC and estimated BAC are then used to fit the forward convolution filter. Nonlinear least squares with adjoint-based gradient computation are used to fit both models. Calibration results are compared with those obtained using BAC/BrAC from alcohol challenges and from standard, linear, metabolic absorption, and zero order kinetics-based elimination models, by considering peak BAC, time of peak, and area under the BAC curve. Our models (with population parameters) could be included in a smart phone app that makes it convenient for the subject/patient to enter drinking data for a single episode in the field.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print