SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Hiroi N, Wong ML, Licinio J, Park C, Young M, Gold PW, Chrousos GP, Bornstein SR. Mol. Psychiatry 2001; 6(5): 540-546.

Affiliation

Pediatric and Reproductive Endocrinology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.

Copyright

(Copyright © 2001, Nature Publishing Group)

DOI

10.1038/sj.mp.4000908

PMID

11526468

Abstract

Corticotropin-releasing hormone (CRH) is a key neuroendocrine factor implementing endocrine, immune and behavioral responses to stress. CRH exerts its action through two major receptors, CRH-R1 and CRH-R2. Recently novel non-peptidic antagonists directed against CRH-R1 or CRH-R2 have been proposed as promising agents in the treatment of depression, anxiety and eating disorder. However, so far the CRH-receptor system has not been widely studied in humans. Therefore, we employed quantitative TaqMan PCR to analyze the expression and distribution of both CRH-R1 and CRH-R2 in human brain tissue and peripheral organs. Furthermore the expression of CRH receptors was analyzed for the first time in pituitaries of suicide victims by in situ hybridization and quantitative PCR. Our data demonstrated a different expression pattern in humans as compared to rodents. Both CRH-R1 and CRH-R2 were expressed in high amounts in the brain with the strongest expression in the pituitary. As described in rodents, however the CRH-R1 in human was the predominant receptor in the brain (82.7 +/- 11.0%), whilst CRH-R2 was the predominant receptor in peripheral organs (77.0 +/- 15.8%). There was a shift in the ratio of CRH-R1/R2 in the pituitaries of suicide victims. In conclusion, both CRH-R1 and CRH-R2 are widely expressed in human tissues with a distribution substantially different from rodents. Strong expression of both CRH-R1 and CRH-R2 in human pituitaries suggests that particularly under stress, activation of the HPA axis can be maintained through both receptors.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print