SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Wilson RP, Holton MD, Walker JS, Shepard EL, Scantlebury DM, Wilson VL, Wilson GI, Tysse B, Gravenor M, Ciancio J, McNarry MA, Mackintosh KA, Qasem L, Rosell F, Graf PM, Quintana F, Gomez-Laich A, Sala JE, Mulvenna CC, Marks NJ, Jones MW. Mov. Ecol. 2016; 4: e22.

Affiliation

Visual Computing, Computer Science, College of Science, Swansea University, Singleton Park, Swansea, SA2 8PP UK.

Copyright

(Copyright © 2016, Holtzbrinck Springer Nature Publishing Group - BMC)

DOI

10.1186/s40462-016-0088-3

PMID

27688882

Abstract

BACKGROUND: We are increasingly using recording devices with multiple sensors operating at high frequencies to produce large volumes of data which are problematic to interpret. A particularly challenging example comes from studies on animals and humans where researchers use animal-attached accelerometers on moving subjects to attempt to quantify behaviour, energy expenditure and condition.

RESULTS: The approach taken effectively concatinated three complex lines of acceleration into one visualization that highlighted patterns that were otherwise not obvious. The summation of data points within sphere facets and presentation into histograms on the sphere surface effectively dealt with data occlusion. Further frequency binning of data within facets and representation of these bins as discs on spines radiating from the sphere allowed patterns in dynamic body accelerations (DBA) associated with different postures to become obvious.

METHOD: We examine the extent to which novel, gravity-based spherical plots can produce revealing visualizations to incorporate the complexity of such multidimensional acceleration data using a suite of different acceleration-derived metrics with a view to highlighting patterns that are not obvious using current approaches. The basis for the visualisation involved three-dimensional plots of the smoothed acceleration values, which then occupied points on the surface of a sphere. This sphere was divided into facets and point density within each facet expressed as a histogram. Within each facet-dependent histogram, data were also grouped into frequency bins of any desirable parameters, most particularly dynamic body acceleration (DBA), which were then presented as discs on a central spine radiating from the facet. Greater radial distances from the sphere surface indicated greater DBA values while greater disc diameter indicated larger numbers of data points with that particular value.

CONCLUSIONS: We indicate how this approach links behaviour and proxies for energetics and can inform our identification and understanding of movement-related processes, highlighting subtle differences in movement and its associated energetics. This approach has ramifications that should expand to areas as disparate as disease identification, lifestyle, sports practice and wild animal ecology. UCT Science Faculty Animal Ethics 2014/V10/PR (valid until 2017).


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print